目次: 車
例年であればGWは実家に帰省していて、GWの首都高の様子なんて興味もなければ知りもしませんでしたが、今年のGWは珍しく実家に帰らなかったんです。
しかもGWの初日の今日、間違えて湾岸線の「下り」に乗ってしまいました。当然ながらエラい渋滞にはまりましたが、併走する下道は空いているようで不思議でした。
ちょっと訳あって朝、昼の2回(高速上り、下り&高速上り、下道の下り)走ったためか、渋滞の傾向が良く見えました。首都高1号と湾岸高速の下りだけ1日中ずっと渋滞していました。湾岸線は北関東ナンバーの車で埋め尽くされていましたが、高速の上りや下道のR357、R15(第一京浜)は空いていました。
別の道、中央道と甲州街道を思い浮かべると、高速も下道もどちらも渋滞しそうなものです。たとえばR15(第一京浜)だって、首都高1号や横羽線とほぼずっと併走していますし、渋滞していそうなものですがめちゃ空いていて意外でした。まあ、大田区から向こうは知らないですけど……。なぜ首都高だけ例外なんでしょう、不思議ですね。
どこから来るかにもよりますが、C2や湾岸線下りの混雑を回避するなら、足立区辺りで降りてR4 → 都内 → R15が下道ルートでしょうか?そうするとですね、
自分がもし北関東から来たお父さんホリデードライバーだとしたら、わざわざ降りるか?というと……まず降りませんね!普段運転しないならなおさら嫌です。都内の道なんか考えたくない、もし迷おうものなら家族のブーイングは必至。面倒です。
というわけで「GW初日の湾岸高速は下りのみ2時間以上の渋滞、上りと、下りに併走する下道はがら空き」という役に立たないクソ知識を体得しました。
超どうでも良い!もう二度と使わなさそう!!
目次: ALSA
一覧が欲しくなったので作りました。
厳密にいうとALSA関係ないですが、PulseAudioやmplayerの話もまとめます。
Twitterで見かけた神奈川から「独立」目指す3政令市、黒岩知事「正直ピンとこない」…初の4者同席協議 - 読売新聞という記事を読んで。
もし3政令指定都市(横浜市&川崎市&相模原市)が抜けたとすると、神奈川県の人口と面積は下記のようになります。
面積もそこそこ減ります(相模原市が人口の割に広いため)が人口も激減します。記事にもある通り神奈川県は横浜市に離脱されると県税が激減するので、賛成する理由は皆無です。
記事にある「特別自治市」構想を知らなかったのでWikipediaを(特別自治市 - Wikipedia)見ると、最近言い始めたことではなくて2010年から何度も出ては消えしていた議論のようです。
さらに古くは1947年制定の地方自治法に定められた「特別市」制度(特別市 日本の場合 - Wikipedia、1956年に削除され、政令指定都市制度に変更)の頃から、大都市は県から独立したがっていました。お互いの言い分は色々ありましょうが、ざっくり言って「税金の取り合い」です。
市と県の言い分は完全に対立しており、何らかの強硬手段を用いない限り永遠に合意されることはありません。今回の神奈川県の場合も、話し合いだけならば流れて終わりでしょう……。お金持ちな都市と貧乏な地方の再配分問題が根底にあって、対立は根深いですね。
大都市圏の地方自治にあたって、国 - 県 - 市という3段ピラミッドのうち、1段抜かして2段に変えるアイデア自体はさほど珍しくありません。やり方としては2種類あるみたいです。
特別区協議会の資料(諸外国の首都の比較 - 公益財団法人 特別区協議会)によると、特別区はロンドンが近い考え方で、ベルリンは1県1市で県と市が合併してますね。特別市はパリが近い考え方でしょう。ワシントンD.C. は他のどの地域とも違いますね。国直轄の特別地域かな……?
他の国を調査したまとまった資料を見つける気力が無かったんですが、東京(特別区)は割と珍しい構造に見えます。特別市タイプを目指す「特別自治市」構想のやりたいことは世界や時流にも合っているのでしょう。たぶん。
目次: ゲーム
SteamとEpic GamesとNintendo Switchで買ったゲームプレイ時間の振り返りです。ゲーム名の左端にある数字は「何時間遊んだか?」、その右はゲームプラットフォームを示します。
23個買って、コンプやクリアは7つ、相当遊んだ(ゲームプレイ時間100時間超)と言えるのは4つ(Cities, Dyson, the Hunter, スプラトゥーン2)です。買って半数は最後まで遊ばず、3割は放置同然です。
子供の時はゲーム機が壊れるまで遊んでましたけど、PlayStation 2以降はハードが壊れるより新機種が出る方が早くなりました。もうこの時点でゲーマーから陥落してたのかなあ。
今やゲームを買うが遊ばないという、子供時代の自分が聞いたら「もったいない!」と憤死しそうな、悪い大人になりました。自分の金だから得とか損とかそういう問題は気にしなくて良いんですけど、ゲームを作った人には申し訳ない……。
傾向として、PCゲームのアクション系(Battlefield, DAEMON X MACHINA)、Switchのシミュレーションゲーム(A列車、コロニスト)は諦め率が高いです。アクションはそもそも得意ではないし目が痛くなって疲れるので……諦め率は高めです。むしろ一番苦手なジャンルといえる対戦アクションのスプラトゥーン2を100時間近く遊んだことが奇跡的でした。
Switchのシミュレーションゲームは面白いんですが、画面が狭すぎ&操作しづらいなどゲームとして基本的な部分の出来の悪さに耐えられず嫌になってしまいました。
終わった(実績100%, コンプorクリアなど)
たくさん遊んだ、明確なクリア条件がない、など。
未クリア、飽きた、など。
買ったけどほぼ遊んでいない。
箱庭シミュレーション系が多いのは好みの問題です。
メモ: 技術系の話はFacebookから転記しておくことにした。Switchのゲームを集計に追加。
目次: 射的
新たな趣味でスピードシューティングを始めました。いくつか大会があるそうですが、私が通い始めたTARGET-1というお店(サイトへのリンク)では「JTSAアンリミテッド」という大会(サイトへのリンク)のルールを使っています。5月末にアンリミテッドの大会があるそうで、大会が終わった6月からはリミテッドという大会(サイトへのリンク)のルールにするとも言っていました。
全コースの合計タイムがスコアとなり(スコアが少ない=早い方が良い成績)ます。銃によりスピードシューティング向き、不向き(※)はあるものの、基本的には好きな銃+ホルスターで参加して構わないです。
個人競技ですから、タイムが遅くても早くても特に誰も迷惑しないのです。個人競技万歳。
(※)いただいたアドバイスによれば、
とのこと。
メモ: 技術系の話はFacebookから転記しておくことにした。いくつか追記。
楽天モバイルが有料化するというニュースが話題になっていました。無料攻勢を続けていましたが、シェアは2%程度でかなり苦戦しているそうです。
携帯電話と言えば今も昔もドコモが強いイメージですが、果たしてその認識は合っているのでしょうか?電気通信事業者協会のデータを元に1996年〜2014年までの契約者数をグラフにしてみました(グラフとまとめたデータはGoogleスプレッドシートにしておきました)。ウィルコムとアステルのデータはなぜか1996/06からしか取れないため、グラフがやや変になっています。ご了承ください。
見事にドコモが強いです。ドコモが絶対王者なのはずっと変わらないんですが、
という具合でしょうか。
たしか国際電信電話(KDD)、第二電電(DDI)、日本移動通信(IDO)の三社合併でKDDIとなったのが2000年で、ブランドスローガンau by KDDIを言い始めたのが2000年か2001年だった気がします。KDDIがドコモを撃ち落とす覚悟の表れだったのかもしれません。
ソフトバンクに目を向けると、ソフトバンクがVodafoneを買収したのが2006年で、ソフトバンクの猛追はそこから始まったんだろうな〜などと想像するとなかなか面白いグラフですね。
海外から日本語がおかしいスパムやフィッシング詐欺のメールが来ることは多いですが、今回来たメールは桁違いに単語がおかしいです。
一例を挙げれば、
わざとやっているのではないか?と思うほどにおかしいです。
メールヘッダを見るとContent-Typeがtext/htmlとなっていたので、これはもしかしてHTML表示の場合のみまともに見えるタイプなのでは?と疑って、普段使っているテキスト表示から、HTML表示に変更したところ、
割とまともに表示されました。日本語としてはイマイチですが、完全におかしい単語はなりを潜めています。
テキスト表示の際に多数出てきたおかしな単語の役割もわかりましたね。表示されないようにした意味の無い文字を紛れ込ませ、テキストしか見ないメールクライアントのスパムフィルターに引っかかる事態を回避していると思われます。うまくやっているつもりなんでしょうけど、普段からHTML表示を無効にしている人には、意味の無い文字が全て見えて逆に不審度がMaxになる諸刃の剣です。
余計なことばかり工夫する暇があるなら、その頭をもっと役に立つことに使えば良いのにね……。
目次: プロバイダ
携帯に突然BIGLOBE光から電話が掛かってきて、ドコモ光から切り替えないか?と勧誘されました。KDDIはどこから私の電話番号と、ドコモ光を契約していることを知ったのでしょうか……?
勧誘の人は1,000円/月くらい安くなるはず、今なら工事費を無料で切り替えられる、キャッシュバックの分だけ得、とまくし立ててきます。しかし過去に電話勧誘で契約して良かったことがない(ドコモ光に変えた時とか)ので、契約しませんでした。
料金を確認すると今使っているドコモ光(タイプA)は4,400円/月、BIGLOBE光は4,378円/月で、ほとんど変わりません。しかもBIGLOBE光は3年縛りで、解約の機会がさらに限られます(違約金は11,900円も取られる)。ドコモ光の2年縛りだって最悪なのに3年縛り……悪化させてどうするんでしょう。
適当ばっかり言いやがって、これだから電話勧誘は嫌いなんだ。
目次: ALSA
先日送ったalsa-libへのパッチ(2022年4月29日の日記参照)がマージされました(該当するコミットへのリンク)。3週間くらい何も反応が無かったので、送り先を間違ったかな……?と思い始めたところでした。やー良かった良かった。
バグの発見(2014年7月9日の日記参照)から直るまでに8年も空きました。ALSAのような有名なOSSだと利用者数も半端ないので、バグを年単位で放っておくと他の人が同じバグに気づいて直すことが多いです。ところが、このバグは割と発生条件が変わっているのもあり、誰もバグに気づかなかったか、わざわざ直す価値を感じなかったのでしょう。有名OSSでは割と珍しいケースですよね。
何かの量を表すときは数字+単位(例: 100m)で表します。余りにも桁が多くなり見づらい場合は適切な接頭辞を付けて数字の桁を減らして表すことが多いです(例: 100000m → 100km)。接頭辞はSI(国際単位系)で定義されており、1/1000を表すミリ(m)や1000倍を表すキロ(k)などがあります。これらは良く見かける接頭辞だと思います。
しかしSI接頭辞として定義されているものの、あまり使われない接頭辞もあります。顕著な物はデシ(d)、ヘクト(h)やデカ(da)辺りでしょう。デシとヘクトは少ないながらも見かけますが、デカは使われているところを見たことがありません。
ルールとしてはSI単位であれば、どのSI接頭辞を付けても間違いではない(ヘクトメートルhmも正しい)ですが、非SI単位はSI接頭辞を付けてはいけない場合があります。良く見かける組み合わせを表にしてみました。
接頭辞 | m | g | Pa | Hz | B | L | a |
---|---|---|---|---|---|---|---|
k(x1000) | ○ | ○ | ○ | ○ | ○ | ||
h(x100) | ○ | ○ | |||||
da(x10) | |||||||
d(x1/10) | ○ | ○ | |||||
c(x1/100) | ○ | ||||||
m(x1/1000) | ○ | ○ | ○ |
各単位の簡単な解説です。
デカを良く使う単位があれば、是非お目に掛かりたいところです……。
目次: C言語とlibc
誰も興味ないglibcの話シリーズ、スレッドのスタックはどうやって確保するのか?を追います。
ソースコードはglibc-2.35を見ています。pthread_create()の実体はいくつかありますが、2.34以降ならば関数__pthread_create_2_1()が実体です。
// glibc/nptl/pthread_create.c
versioned_symbol (libc, __pthread_create_2_1, pthread_create, GLIBC_2_34);
libc_hidden_ver (__pthread_create_2_1, __pthread_create)
#ifndef SHARED
strong_alias (__pthread_create_2_1, __pthread_create)
#endif
主要な関数としては、スタックを確保するallocate_stack()とclone()を呼ぶcreate_thread()です。スレッド属性も見てますが、今回は特に使わないので無視します。
__pthread_create_2_1 allocate_stack get_cached_stack create_thread
スレッドのスタックは2通りの確保方法があります。1つはキャッシュ、もう1つはmmap()です。
// glibc/nptl/pthread_create.c
static int
allocate_stack (const struct pthread_attr *attr, struct pthread **pdp,
void **stack, size_t *stacksize)
{
//...
/* Try to get a stack from the cache. */
reqsize = size;
pd = get_cached_stack (&size, &mem);
if (pd == NULL) //★★キャッシュがなければこのif文が成立してmmapでメモリ確保★★
{
/* If a guard page is required, avoid committing memory by first
allocate with PROT_NONE and then reserve with required permission
excluding the guard page. */
mem = __mmap (NULL, size, (guardsize == 0) ? prot : PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
//...
retval = create_thread (pd, iattr, &stopped_start, stackaddr,
stacksize, &thread_ran);
//...
このget_cached_stack()がNULLを返す=失敗=キャッシュからスタックを確保できなかった、を意味します。確保できない場合はmmap()を呼んでカーネルから匿名ページを確保し、スタック領域として使います。
キャッシュからスタックを確保できるのは、既に終了したスレッドのスタック領域がキャッシュにある場合です。スレッドが終了して資源の回収pthread_join()が終わった後は、スレッドのスタックにアクセスしてはいけません。つまり誰もアクセスしない領域です。
スタック領域をカーネルに返しても良いですが、カーネルからメモリを確保したり解放するのは一般的に遅い処理のため、別のスレッドのスタックとして再利用してカーネルからのメモリ確保&解放の回数を減らし、効率を上げる仕組みと思われます。
まずは読み出す側であるget_cached_stack()関数のコードから見ます。ちなみにコード内に頻出するtcbはThread Controll Blockの略だそうです。
// glibc/nptl/allocatestack.c
static struct pthread *
get_cached_stack (size_t *sizep, void **memp)
{
size_t size = *sizep;
struct pthread *result = NULL;
list_t *entry;
lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE);
/* Search the cache for a matching entry. We search for the
smallest stack which has at least the required size. Note that
in normal situations the size of all allocated stacks is the
same. As the very least there are only a few different sizes.
Therefore this loop will exit early most of the time with an
exact match. */
list_for_each (entry, &GL (dl_stack_cache)) //★★キャッシュのリストを全部調べる★★
{
struct pthread *curr;
curr = list_entry (entry, struct pthread, list);
if (__nptl_stack_in_use (curr) && curr->stackblock_size >= size)
{
if (curr->stackblock_size == size) //★★一致するサイズのスタックがあれば使う★★
{
result = curr;
break;
}
if (result == NULL
|| result->stackblock_size > curr->stackblock_size)
result = curr;
}
}
//...
カギを握るのはスタック領域をキャッシュするリストdl_stack_cacheのようです。先程も言いましたが、このリストに要素が追加されるタイミングの1つはpthread_join()です。pthread_join()からコードを追います。
// glibc/nptl/pthread_join.c
int
___pthread_join (pthread_t threadid, void **thread_return) //★★pthread_join()の実体★★
{
return __pthread_clockjoin_ex (threadid, thread_return, 0 /* Ignored */,
NULL, true);
}
versioned_symbol (libc, ___pthread_join, pthread_join, GLIBC_2_34);
// glibc/nptl/pthread_join_common.c
int
__pthread_clockjoin_ex (pthread_t threadid, void **thread_return,
clockid_t clockid,
const struct __timespec64 *abstime, bool block)
{
struct pthread *pd = (struct pthread *) threadid;
//...
void *pd_result = pd->result;
if (__glibc_likely (result == 0))
{
/* We mark the thread as terminated and as joined. */
pd->tid = -1;
/* Store the return value if the caller is interested. */
if (thread_return != NULL)
*thread_return = pd_result;
/* Free the TCB. */
__nptl_free_tcb (pd); //★★これ★★
}
else
pd->joinid = NULL;
//...
// glibc/nptl/nptl_free_tcb.c
void
__nptl_free_tcb (struct pthread *pd)
{
/* The thread is exiting now. */
if (atomic_bit_test_set (&pd->cancelhandling, TERMINATED_BIT) == 0)
{
/* Free TPP data. */
if (pd->tpp != NULL) //★余談TPP = Thread Priority Protectだそうです★
{
struct priority_protection_data *tpp = pd->tpp;
pd->tpp = NULL;
free (tpp);
}
/* Queue the stack memory block for reuse and exit the process. The
kernel will signal via writing to the address returned by
QUEUE-STACK when the stack is available. */
__nptl_deallocate_stack (pd); //★★これ★★
}
}
libc_hidden_def (__nptl_free_tcb)
// glibc/nptl/nptl-stack.c
void
__nptl_deallocate_stack (struct pthread *pd)
{
lll_lock (GL (dl_stack_cache_lock), LLL_PRIVATE);
/* Remove the thread from the list of threads with user defined
stacks. */
__nptl_stack_list_del (&pd->list);
/* Not much to do. Just free the mmap()ed memory. Note that we do
not reset the 'used' flag in the 'tid' field. This is done by
the kernel. If no thread has been created yet this field is
still zero. */
if (__glibc_likely (! pd->user_stack))
(void) queue_stack (pd); //★★これ★★
else
/* Free the memory associated with the ELF TLS. */
_dl_deallocate_tls (TLS_TPADJ (pd), false);
lll_unlock (GL (dl_stack_cache_lock), LLL_PRIVATE);
}
libc_hidden_def (__nptl_deallocate_stack)
/* Add a stack frame which is not used anymore to the stack. Must be
called with the cache lock held. */
static inline void
__attribute ((always_inline))
queue_stack (struct pthread *stack)
{
/* We unconditionally add the stack to the list. The memory may
still be in use but it will not be reused until the kernel marks
the stack as not used anymore. */
__nptl_stack_list_add (&stack->list, &GL (dl_stack_cache)); //★★キャッシュのリストに追加★★
GL (dl_stack_cache_actsize) += stack->stackblock_size;
if (__glibc_unlikely (GL (dl_stack_cache_actsize)
> __nptl_stack_cache_maxsize))
__nptl_free_stacks (__nptl_stack_cache_maxsize);
}
やっとリストdl_stack_cacheにスタック領域を追加している場所まで来ました。もっとあっさりかと思いましたが、意外と呼び出しが深かったです……。
目次: ALSA
遠くの部屋にあるPCで再生した音声を手元のスピーカーで聞きたい場合、スピーカーの線を延々と伸ばすよりリモート再生したほうが楽です。
リモート再生の方法はいくつかありますが、最近のLinuxディストリビューションであれば大抵はPulseAudioがインストールされていると思うので、PulseAudioのTCP送信機能を使うのが楽でしょう。
クライアントとサーバーが同じ内容のCookie(~/.config/pulse/cookieにある)を持っていないと、下記のようにAccess deniedといわれて接続できません。
$ PULSE_SERVER=192.168.1.10 speaker-test -D pulse speaker-test 1.2.9 Playback device is pulse Stream parameters are 48000Hz, S16_LE, 1 channels Using 16 octaves of pink noise ALSA lib pulse.c:242:(pulse_connect) PulseAudio: Unable to connect: Access denied Playback open error: -111,Connection refused
クライアントにCookieファイルをコピーできない場合は、module-native-protocol-tcpにauth-anonymous=1を渡すと良いそうです。
サーバー側は音声を受け取ってスピーカーなどに送る役目を果たします。私はスピーカーの横にRaspberry Piを置いてサーバーにしています。PulseAudioの設定は簡単で、
# vi /etc/pulse/default.pa load-module module-native-protocol-tcp
既にPulseAudioが起動している場合があるので、一度終了させます。
$ pacmd Welcome to PulseAudio 12.2! Use "help" for usage information. >>> exit # PulseAudioの再起動をします。 $ pulseaudio -D
PulseAudioの設定テストを行う場合は-Dなし(フォアグラウンド実行)すると良いです。Crtl-Cで終了できますので、起動&終了が素早くできて楽です。
クライアント側はMP3などをデコードし、音声をサーバーに送る役目を果たします。使い方は環境変数PULSE_SERVERを指定して再生するだけです。
$ export PULSE_SERVER=192.168.1.10 # ★★PulseAudioサーバー側のIPアドレス★★ $ mplayer --no-video test.mp3
本当はmodule-zeroconf-discoverを正しく設定すれば環境変数をいちいち設定する必要はなく、PulseAudioの設定GUIから出力先の一つとして選択できるようになるはずです。が、どうも私の環境だとうまく動いてくれなくて挫折しました……。