目次: Linux
今回はOpenSBIがRISC-Vの拡張機能をどのように認識し有効にするか調べます。
RISC-Vはたくさんの拡張命令と拡張機能が存在し、CPUやHWの実装によって対応する機能が異なります。そのためCPU/HWがRISC-Vのどの規格に対応しているのかを表す方法が必要です。RISC-Vの規格では命令セットと拡張機能をまとめて"rv64imafdc_aaa_bbb"のような文字列で表します。この文字列の名前がわからないのが困ったところですが、仕様書ではISA extensionsと書かれていることが多いようなので、以降はISA extensionsと表記します。
当初ISA extensionsは"rv64imafdc"のような「rv + ビット幅(32 or 64) + アルファベットの羅列(1文字=1つの拡張を表す)」だけの素朴なルールでしたが、際限なく増えるRISC-Vの拡張機能はこんなルールでは表せません。現在は"rv64imafdc_aaa_bbb_ccc"のようなアンダースコア + 拡張名を列車のように繋げるルール(RISC-V Unprivileged Architecture: Chapter 36. ISA Extension Naming Conventions)が採用されています。
例えばQEMUの仮想CPUのISA extensionsを見ると、
rv64imafdch_zic64b_zicbom_zicbop_zicboz_ ziccamoa_ziccif_zicclsm_ziccrse_ zicntr_zicsr_zifencei_zihintntl_ ihintpause_zihpm_za64rs_zawrs_ zfa_zca_zcd_zba_ zbb_zbc_zbs_ssccptr_ sscounterenw_sstc_sstvala_sstvecd_ svadu
本来はとても長い1行ですが、見づらいため4つごとに改行を入れています。もはやISA extensionsは魔法の呪文か暗号の様相を呈していて、どこか一文字だけ間違えていたとしても気付ける自信がありません。
拡張機能の認識方法を調べます。答えを先に書くとデバイスツリーのcpuノードのriscv,isaプロパティの長い長い文字列を頭から解析しています。割と力技でした。
/ {
cpus {
cpu0: cpu@0 {
device_type = "cpu";
reg = <0>;
compatible = "riscv";
riscv,isa-base = "rv64i";
riscv,isa = "rv64imafdc_zicsr_zifencei_zba_zbb_zbs"; //★★これ★★
status = "okay";
//...
ISA extensionsの文字列解析をする関数はfdt_parse_isa_one_hart()関数です。
sbi_init @ lib/sbi/sbi_init.c init_coldboot @ lib/sbi/sbi_init.c sbi_hart_init @ lib/sbi/sbi_hart.c hart_detect_features @ lib/sbi/sbi_hart.c sbi_platform_extensions_init @ include/sbi/sbi_platform.h sbi_platform_ops(plat)->extensions_init(hfeatures); -> generic_extensions_init @ platform/generic/platform.c fdt_parse_isa_extensions @ lib/utils/fdt/fdt_helper.c fdt_parse_isa_all_harts @ lib/utils/fdt/fdt_helper.c fdt_parse_isa_one_hart @ lib/utils/fdt/fdt_helper.c
GenericプラットフォームをQEMU用のデバイスツリーで動作させた際の呼び出し経路はこんな感じです。3つ上位のfdt_parse_isa_all_harts()関数を見ると、
// opensbi/platform/generic/platform.c
static int generic_extensions_init(struct sbi_hart_features *hfeatures)
{
int rc;
//★★第3引数hfeatures->extensionsにISA extensionsの解析結果を書き込む★★
//★★hfeaturesはscratch領域のhart_features_offsetバイト目、手元の環境だと192バイト目★★
/* Parse the ISA string from FDT and enable the listed extensions */
rc = fdt_parse_isa_extensions(fdt_get_address(), current_hartid(),
hfeatures->extensions);
if (rc)
return rc;
if (generic_plat && generic_plat->extensions_init)
return generic_plat->extensions_init(generic_plat_match,
hfeatures);
return 0;
}
// opensbi/lib/utils/fdt/fdt_helper.c
int fdt_parse_isa_extensions(void *fdt, unsigned int hartid,
unsigned long *extensions)
{
int rc, i;
unsigned long *hart_exts;
struct sbi_scratch *scratch;
if (!fdt_isa_bitmap_offset) {
fdt_isa_bitmap_offset = sbi_scratch_alloc_offset(
sizeof(*hart_exts) *
BITS_TO_LONGS(SBI_HART_EXT_MAX));
if (!fdt_isa_bitmap_offset)
return SBI_ENOMEM;
//★★この関数がISA extensionsの解析結果を置く場所は★★
//★★scratch領域 + fdt_isa_bitmap_offsetの場所★★
rc = fdt_parse_isa_all_harts(fdt);
if (rc)
return rc;
}
scratch = sbi_hartid_to_scratch(hartid);
if (!scratch)
return SBI_ENOENT;
//★★scratch領域 + fdt_isa_bitmap_offsetの場所を取得する★★
hart_exts = sbi_scratch_offset_ptr(scratch, fdt_isa_bitmap_offset);
//★★ISA extensionsの解析結果は、hfeatures->extensionsに全てまとめられる★★
for (i = 0; i < BITS_TO_LONGS(SBI_HART_EXT_MAX); i++)
extensions[i] |= hart_exts[i];
return 0;
}
// opensbi/lib/utils/fdt/fdt_helper.c
static int fdt_parse_isa_all_harts(void *fdt)
{
u32 hartid;
const fdt32_t *val;
unsigned long *hart_exts;
struct sbi_scratch *scratch;
int err, cpu_offset, cpus_offset, len;
if (!fdt || !fdt_isa_bitmap_offset)
return SBI_EINVAL;
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0)
return cpus_offset;
fdt_for_each_subnode(cpu_offset, fdt, cpus_offset) {
err = fdt_parse_hart_id(fdt, cpu_offset, &hartid);
if (err)
continue;
if (!fdt_node_is_enabled(fdt, cpu_offset))
continue;
//★★device treeのriscv,isaプロパティを見る★★
val = fdt_getprop(fdt, cpu_offset, "riscv,isa", &len);
if (!val || len <= 0)
return SBI_ENOENT;
scratch = sbi_hartid_to_scratch(hartid);
if (!scratch)
return SBI_ENOENT;
//★★解析結果を置く場所はscratch領域 + fdt_isa_bitmap_offsetの場所★★
hart_exts = sbi_scratch_offset_ptr(scratch,
fdt_isa_bitmap_offset);
//★★riscv64imafdc_zicsr_zifencei_...のような文字列を解析する★★
err = fdt_parse_isa_one_hart((const char *)val, hart_exts);
if (err)
return err;
}
return 0;
}
デバイスツリーのcpusノードを探して、子ノード(cpu@0など)のriscv,isaプロパティを読み出して、文字列解析するfdt_parse_isa_one_hart()関数に渡していることがわかります。
解析結果はscratch領域(OpenSBIのhartごとの情報を保持しておくメモリ領域、スタック領域の末尾に確保される)のfdt_isa_bitmap_offsetに置かれ、最終的には別のscratch領域にあるfeatures->extensionsにまとめられます。scratch領域の詳細が気になるところですが、また別の機会に調べることにします。
拡張機能はリセット直後は無効になっているものもあるので、有効にする必要があります。RISC-V Privileged Architectureではmenvcfgレジスタがあり、適切なビットフィールドに値をセットして機能の有効/無効を切り替える場合があります。有効/無効が設定できない機能もあって、統一感がないです……。
例えばS-mode用のタイマーコンペアレジスタ(stimecmpレジスタ)を定義しているSSTC拡張では、menvcfgのビット63 STCE(STimecmp Enable)フィールドに1をセットすると機能が有効になります。機能を有効にせずstimecmpにアクセスするとillegal instruction例外が発生します。
OpenSBIのコードでmenvcfgレジスタに値を設定する関数は下記のmstatus_init()です。
// opensbi/lib/sbi/sbi_hart.c
/**
* Check whether a particular hart extension is available
*
* @param scratch pointer to the HART scratch space
* @param ext the extension number to check
* @returns true (available) or false (not available)
*/
bool sbi_hart_has_extension(struct sbi_scratch *scratch,
enum sbi_hart_extensions ext)
{
struct sbi_hart_features *hfeatures =
sbi_scratch_offset_ptr(scratch, hart_features_offset);
if (__test_bit(ext, hfeatures->extensions))
return true;
else
return false;
}
static void mstatus_init(struct sbi_scratch *scratch)
{
int cidx;
unsigned long mstatus_val = 0;
unsigned int mhpm_mask = sbi_hart_mhpm_mask(scratch);
uint64_t mhpmevent_init_val = 0;
uint64_t menvcfg_val, mstateen_val;
//...
if (sbi_hart_priv_version(scratch) >= SBI_HART_PRIV_VER_1_12) {
menvcfg_val = csr_read(CSR_MENVCFG);
#if __riscv_xlen == 32
menvcfg_val |= ((uint64_t)csr_read(CSR_MENVCFGH)) << 32;
#endif
#define __set_menvcfg_ext(__ext, __bits) \
if (sbi_hart_has_extension(scratch, __ext)) \
menvcfg_val |= __bits;
/*
* Enable access to extensions if they are present in the
* hardware or in the device tree.
*/
//★★sbi_hart_has_extension()関数で拡張機能の一覧hfeatures->extensionsのビットをテストする★★
//★★拡張機能が存在しているなら、menvcfgの相当するビットをセットする★★
__set_menvcfg_ext(SBI_HART_EXT_ZICBOZ, ENVCFG_CBZE)
__set_menvcfg_ext(SBI_HART_EXT_ZICBOM, ENVCFG_CBCFE)
__set_menvcfg_ext(SBI_HART_EXT_ZICBOM,
ENVCFG_CBIE_INV << ENVCFG_CBIE_SHIFT)
#if __riscv_xlen > 32
__set_menvcfg_ext(SBI_HART_EXT_SVPBMT, ENVCFG_PBMTE)
#endif
__set_menvcfg_ext(SBI_HART_EXT_SSTC, ENVCFG_STCE)
__set_menvcfg_ext(SBI_HART_EXT_SMCDELEG, ENVCFG_CDE);
__set_menvcfg_ext(SBI_HART_EXT_SVADU, ENVCFG_ADUE);
#undef __set_menvcfg_ext
/*
* When both Svade and Svadu are present in DT, the default scheme for managing
* the PTE A/D bits should use Svade. Check Svadu before Svade extension to ensure
* that the ADUE bit is cleared when the Svade support are specified.
*/
if (sbi_hart_has_extension(scratch, SBI_HART_EXT_SVADE))
menvcfg_val &= ~ENVCFG_ADUE;
csr_write(CSR_MENVCFG, menvcfg_val); //★★menvcfgを設定、拡張機能が有効になる★★
#if __riscv_xlen == 32
csr_write(CSR_MENVCFGH, menvcfg_val >> 32);
#endif
/* Enable S-mode access to seed CSR */
if (sbi_hart_has_extension(scratch, SBI_HART_EXT_ZKR)) {
csr_set(CSR_MSECCFG, MSECCFG_SSEED);
csr_clear(CSR_MSECCFG, MSECCFG_USEED);
}
}
/* Disable all interrupts */
csr_write(CSR_MIE, 0);
/* Disable S-mode paging */
if (misa_extension('S'))
csr_write(CSR_SATP, 0);
}
以上がOpenSBIによって拡張機能が認識&有効になる仕掛けです。ISA extensionsを間違えるとこの仕組みは動かないので、ISA extensionsの長くて難しくて間違いやすい記述はどうすれば良いの?と疑問が湧きます。しかしその答えはOpenSBIにはなさそうですね……。
ちなみにmenvcfgの詳細はPrivileged Architecture(GitHubにソースコードがあります、PDFはReleasesからダウンロード可能)に記載されています。なんちゃら拡張が使う予定のビットフィールドなのでそちらを参照せよと書いていることも多く、各々の拡張機能の仕様書を行脚することになるでしょう。
目次: Linux
GDBは便利ですが、少し使わないでいるとあっという間にコマンドを忘れます。便利&使うコマンドをメモしておきます。
GDBはデバッグ中のプログラムがシグナルを受け取ると実行停止してどうするか聞いてきます。この機能は便利ですが、シグナルをプロセス間で送りあって動くようなプログラムだと頻繁に停止して鬱陶しいです。
(gdb) handle SIGUSR1 nostop noprint Signal Stop Print Pass to program Description SIGUSR1 No No Yes User defined signal 1
こんなときはhandleコマンドで無視したり非表示にできます。私はあまり使ったことがないのですが、nopassにするとシグナルをデバッグ対象に渡さないようにできるようです。
指定したメモリの内容をファイルにコピーします。個人的には間違えやすいコマンドで、3番目の引数のmemoryをいつも打ち忘れます。
(gdb) dump binary memory foo.bin 0x80000000 0x80001000
意外と長くなります。
指定したファイルの内容をメモリにコピーします。個人的には名前間違え率No.1なコマンドで、loadコマンドと間違えます。
(gdb) restore foo.bin binary 0x80000000
なんでloadじゃないんだよ?と思いますが、loadは別の意味のコマンド(デバッグ対象プログラムをメモリにロードする、ただコピーするだけではなくプログラムヘッダを考慮する)に使われているためです。
実行可能ファイルからデバッグシンボルを読み出すコマンドです。-oオプションにより、シンボルのアドレスにオフセットを加えることもできます。
(gdb) symbol-file foo.elf -o 0x80000000
通常のデバッグではGDBが実行ファイルをロードするのであまりお世話になりませんが、組み込み開発では割とお世話になるコマンドです。ROM上に既にロード済みのバイナリのデバッグシンボルを後から読みたいとき、PIEのプログラム(アドレスが0スタートになっている)をデバッグするときに便利です。
目次: 射的
ガスガンのベレッタ92(正確な商品名は東京マルイ U.S. M9ピストル)が壊れました。デコッキングすると100%暴発します。怖い故障モードですね……。それはさておいて週1回の使用とはいえ、2年半も使えたのは割と良い方なんですかね?
初めはスライド側セーフティー周りの故障かと思いましが、どうやらフレーム側のデコッキング機構がダメになったようです。ほぼ新品のM9A1(※)のスライドと載せ替えても暴発しています。これはもうダメそうだなー……。
修理も考えましたがやめました。私は特に改造せずほぼノーマルのまま使っているので、新しい銃に入れ替えても特に問題ないのです。てな訳で、新しくもう1丁購入しました。
(※)東京マルイ M9A1のこと(M9A1の製品リンク)です。M9A1もベレッタ92ベースの銃で、スライドはU.S. M9ピストルと機構的に互換性があります。スライドを入れ替えても正常に動作します。
3年前くらいに購入した(2021年3月6日の日記参照)Microsoft Basic Optical Mouseが壊れました。今までのマウスは左ボタンが壊れて勝手にダブルクリック病になっていましたが、今回はセンターホイールが壊れて下に回しているのに上にスクロールされたり、上に回しているのに下にスクロールされたりする症状が出ています。初めて出会う症状ですが、ダブルクリック病と同じくらいイライラします。
Microsoft Basic Optical Mouse分解
3年使ったものなので内部は埃だらけで若干お見苦しいですが、捨てる前に分解して内部の写真を撮りました。ボタンと逆側にあるねじ1本で留まっているだけで、分解はとても簡単です。内部の基板は極めてシンプルです。片面が茶色(レジストなし)、逆側が緑色(レジストあり)のちょっと変わった基板でした。両面レジストが普通だと思っていましたが、コストカットのためですかね?
さて次のマウスは何にしようかな〜と言いたいところですが、実は同じマウスがもう1つあるので引き続き2個目のMicrosoft Basic Optical Mouseを使います。
間違って2個買ったのではなく、あまりに安かったのですぐ壊れるかと思い2個買いました。でも蓋を開けてみれば3年も使えたし杞憂でしたね。1年あたりにすれば300円くらいで驚異のコストパフォーマンス、素晴らしい製品だと思います。Microsoftはこの価格で儲かっているのでしょうか……?
< | 2024 | > | ||||
<< | < | 09 | > | >> | ||
日 | 月 | 火 | 水 | 木 | 金 | 土 |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | - | - | - | - | - |
合計:
本日: